Simulation of Nitrous Oxide Emissions and Estimation of Global Warming Potential in Turfgrass Systems Using the DAYCENT Model.
نویسندگان
چکیده
Nitrous oxide (NO) emissions are an important component of the greenhouse gas budget for turfgrasses. To estimate NO emissions and global warming potential, the DAYCENT ecosystem model was parameterized and applied to turfgrass ecosystems. The annual cumulative NO emissions predicted by the DAYCENT model were close to the measured emission rates of Kentucky bluegrass ( L.) sites in Colorado (within 16% of the observed values). For the perennial ryegrass ( L.) site in Kansas, the DAYCENT model initially overestimated the NO emissions for all treatments (urea and ammonium sulfate at 250 kg N ha yr and urea at 50 kg N ha yr) by about 200%. After including the effect of biological nitrification inhibition in the root exudate of perennial ryegrass, the DAYCENT model correctly simulated the NO emissions for all treatments (within 8% of the observed values). After calibration and validation, the DAYCENT model was used to simulate NO emissions and carbon sequestration of a Kentucky bluegrass lawn under a series of management regimes. The model simulation suggested that gradually reducing fertilization as the lawn ages from 0 to 50 yr would significantly reduce long-term NO emissions by approximately 40% when compared with applying N at a constant rate of 150 kg N ha yr. Our simulation indicates that a Kentucky bluegrass lawn in Colorado could change from a sink to a weak source of greenhouse gas emissions 20 to 30 yr after establishment.
منابع مشابه
Estimation of the Carbon Footprint in Dairy Sheep Farm
By 2050, the earth’s population is expected to be more than 9 billion. The need for secure food and water supply will force agriculture to increase production. The major greenhouse gases (GHGs) from the livestock sector are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) throughout the production process. These gases are the key contributor to an in...
متن کاملEnhancing the soil and water assessment tool model for simulating N2O emissions of three agricultural systems
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) contributing to global warming, with the agriculture sector as the major source of anthropogenic N2O emissions due to excessive fertilizer use. There is an urgent need to enhance regional/watershedscale models, such as Soil and Water Assessment Tool (SWAT), to credibly simulate N2O emissions to improve assessment of environmental impacts of c...
متن کاملTesting DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado.
Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, s...
متن کاملSimulation of N2O emissions from a urine-affected pasture in New Zealand with the ecosystem model DayCent
[1] We used the trace gas model DayCent to simulate emissions of nitrous oxide (N2O) from a urine-affected pasture in New Zealand. The data set for this site contained yearround daily emissions of nitrification-N2O (N2Onit) and denitrification-N2O (N2Oden), meteorological data, soil moisture, and at least weekly data on soil ammonium (NH4 ) and nitrate (NO3 ) content. Evapotranspiration, soil t...
متن کاملCombined global change effects on ecosystem processes in nine U.S. topographically complex areas
Concurrent changes in climate, atmospheric nitrogen (N) deposition, and increasing levels of atmospheric carbon dioxide (CO2) affect ecosystems in complex ways. The DayCent-Chem model was used to investigate the combined effects of these human-caused drivers of change over the period 1980–2075 at seven forested montane and two alpine watersheds in the United States. Net ecosystem production (NE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 42 4 شماره
صفحات -
تاریخ انتشار 2013